Кубы в пространстве. Тессеракт и вообще n-мерные кубы

Точек (±1, ±1, ±1, ±1). Иначе говоря, он может быть представлен в виде следующего множества:

Тессеракт ограничен восемью гиперплоскостями , пересечение которых с самим тессерактом задаёт его трёхмерные грани (являющиеся обычными кубами). Каждая пара непараллельных трёхмерных граней пересекается, образуя двумерные грани (квадраты), и так далее. Окончательно, тессеракт обладает 8 трёхмерными гранями, 24 двумерными, 32 рёбрами и 16 вершинами.

Популярное описание

Попытаемся представить себе, как будет выглядеть гиперкуб, не выходя из трёхмерного пространства .

В одномерном «пространстве» - на линии - выделим отрезок АВ длиной L. На двумерной плоскости на расстоянии L от АВ нарисуем параллельный ему отрезок DC и соединим их концы. Получится квадрат CDBA. Повторив эту операцию с плоскостью, получим трёхмерный куб CDBAGHFE. А сдвинув куб в четвёртом измерении (перпендикулярно первым трём) на расстояние L, мы получим гиперкуб CDBAGHFEKLJIOPNM.

Построение тессеракта на плоскости

Одномерный отрезок АВ служит стороной двумерного квадрата CDBA, квадрат - стороной куба CDBAGHFE, который, в свою очередь, будет стороной четырёхмерного гиперкуба. Отрезок прямой имеет две граничные точки, квадрат - четыре вершины, куб - восемь. В четырёхмерном гиперкубе, таким образом, окажется 16 вершин: 8 вершин исходного куба и 8 сдвинутого в четвёртом измерении. Он имеет 32 ребра - по 12 дают начальное и конечное положения исходного куба, и ещё 8 рёбер «нарисуют» восемь его вершин, переместившихся в четвёртое измерение. Те же рассуждения можно проделать и для граней гиперкуба. В двумерном пространстве она одна (сам квадрат), у куба их 6 (по две грани от переместившегося квадрата и ещё четыре опишут его стороны). Четырёхмерный гиперкуб имеет 24 квадратные грани - 12 квадратов исходного куба в двух положениях и 12 квадратов от двенадцати его рёбер.

Как сторонами квадрата являются 4 одномерных отрезка, а сторонами (гранями) куба являются 6 двухмерных квадратов, так и для «четырёхмерного куба» (тессеракта) сторонами являются 8 трёхмерных кубов. Пространства противоположных пар кубов тессеракта (то есть трёхмерные пространства, которым эти кубы принадлежат) параллельны. На рисунке это кубы: CDBAGHFE и KLJIOPNM, CDBAKLJI и GHFEOPNM, EFBAMNJI и GHDCOPLK, CKIAGOME и DLJBHPNF.

Аналогичным образом можно продолжить рассуждения для гиперкубов большего числа измерений, но гораздо интереснее посмотреть, как для нас, жителей трёхмерного пространства, будет выглядеть четырёхмерный гиперкуб. Воспользуемся для этого уже знакомым методом аналогий.

Возьмём проволочный куб ABCDHEFG и поглядим на него одним глазом со стороны грани. Мы увидим и можем нарисовать на плоскости два квадрата (ближнюю и дальнюю его грани), соединённые четырьмя линиями - боковыми рёбрами. Аналогичным образом четырёхмерный гиперкуб в пространстве трёх измерений будет выглядеть как два кубических «ящика», вставленных друг в друга и соединённых восемью рёбрами. При этом сами «ящики» - трёхмерные грани - будут проецироваться на «наше» пространство, а линии, их соединяющие, протянутся в направлении четвёртой оси. Можно попытаться также представить себе куб не в проекции, а в пространственном изображении.

Подобно тому, как трёхмерный куб образуется квадратом, сдвинутым на длину грани, куб, сдвинутый в четвёртое измерение, сформирует гиперкуб. Его ограничивают восемь кубов, которые в перспективе будут выглядеть как некая довольно сложная фигура. Сам же четырёхмерный гиперкуб состоит из бесконечного количества кубов, подобно тому как трёхмерный куб можно «нарезать» на бесконечное количество плоских квадратов.

Разрезав шесть граней трёхмерного куба, можно разложить его в плоскую фигуру - развёртку . Она будет иметь по квадрату с каждой стороны исходной грани плюс ещё один - грань, ей противоположную. А трёхмерная развёртка четырёхмерного гиперкуба будет состоять из исходного куба, шести кубов, «вырастающих» из него, плюс ещё одного - конечной «гиперграни».

Свойства тессеракта представляют собой продолжение свойств геометрических фигур меньшей размерности в четырёхмерное пространство.

Проекции

На двумерное пространство

Данная структура сложна для воображения, но возможно спроектировать тессеракт в двумерные или трёхмерные пространства . Кроме того, проектирование на плоскость позволяет легко понять расположение вершин гиперкуба. Таким образом, можно получить изображения, которые больше не отражают пространственные отношения в пределах тессеракта, но которые иллюстрируют структуру связи вершин, как в следующих примерах:

Третья картинка демонстрирует тессеракт в изометрии , относительно точки построения. Это представление представляет интерес при использовании тессеракта как основания для топологической сети, чтобы связать многократные процессоры в параллельных вычислениях.

На трёхмерное пространство

Одна из проекций тессеракта на трёхмерное пространство представляет собой два вложенных трёхмерных куба, соответствующие вершины которых соединены между собой отрезками. Внутренний и внешний кубы имеют разные размеры в трёхмерном пространстве, но в четырёхмерном пространстве это равные кубы. Для понимания равности всех кубов тессеракта была создана вращающаяся модель тессеракта.

  • Шесть усечённых пирамид по краям тессеракта - это изображения равных шести кубов. Однако эти кубы для тессеракта - как квадраты (грани) для куба. Но на самом деле тессеракт можно разделить на бесконечное количество кубов, как куб - на бесконечное количество квадратов, или квадрат - на бесконечное число отрезков.

Ещё одна интересная проекция тессеракта на трёхмерное пространство представляет собой ромбододекаэдр с проведёнными четырьмя его диагоналями, соединяющими пары противоположных вершин при больших углах ромбов. При этом 14 из 16 вершин тессеракта проецируются в 14 вершин ромбододекаэдра , а проекции 2 оставшихся совпадают в его центре. В такой проекции на трёхмерное пространство сохраняются равенство и параллельность всех одномерных, двухмерных и трёхмерных сторон.

Стереопара

Стереопара тессеракта изображается как две проекции на трёхмерное пространство. Такое изображение тессеракта разрабатывалось с целью представить глубину, как четвёртое измерение. Стереопара рассматривается так, чтобы каждый глаз видел только одно из этих изображений, возникает стереоскопическая картина, воспроизводящая глубину тессеракта.

Развёртка тессеракта

Поверхность тессеракта может быть развёрнута в восемь кубов (аналогично тому, как поверхность куба может быть развёрнута в шесть квадратов). Существует 261 различная развёртка тессеракта . Развёртки тессеракта могут быть подсчитаны нанесением на граф соединённых углов.

Тессеракт в искусстве

  • У Эдвине А. «Новая Равнина Абботта», гиперкуб выступает рассказчиком.
  • В одном эпизоде «Приключений Джимми Нейтрона» «мальчик-гений» Джимми изобретает четырёхмерный гиперкуб, идентичный фолдбоксу из романа «Дорога славы » (1963) Роберта Хайнлайна .
  • Роберт Э. Хайнлайн упоминал гиперкубы, по крайней мере, в трёх научно-фантастических рассказах. В «Доме четырёх измерений» («Дом, который построил Тил», ) он описал дом, построенный как развёртка тессеракта, а затем вследствие землетрясения «сложившийся» в четвёртом измерении и ставший «реальным» тессерактом.
  • В романе «Дорога славы » Хайнлайна описана гиперразмерная шкатулка, которая была изнутри больше, чем снаружи.
  • Рассказ Генри Каттнера «Все тенали бороговы» описывает развивающую игрушку для детей из далёкого будущего, по строению похожую на тессеракт.
  • В романе Алекса Гарленда (), термин «тессеракт» используется для трёхмерной развёртки четырёхмерного гиперкуба, а не гиперкуба непосредственно. Это метафора, призванная показать, что познающая система должна быть шире познаваемой.
  • Сюжет фильма «Куб 2: Гиперкуб » сосредотачивается на восьми незнакомцах, пойманных в ловушку в «гиперкубе», или сети связанных кубов.
  • Телесериал «Андромеда » использует тессеракт-генераторы как устройство заговора. Они прежде всего предназначены, чтобы управлять пространством и временем .
  • Картина «Распятие на кресте » (Corpus Hypercubus) Сальвадора Дали ().
  • Комиксы «Nextwave comic book» изображают средство передвижения, включающее в себя 5 зон тессеракта.
  • В альбоме Voivod Nothingface одна из композиций названа «В моём гиперкубе».
  • В романе Энтони Пирса «Маршрут Куба» одна из орбитальных лун Международной ассоциации развития называется тессерактом, который был сжат в 3 измерения.
  • В сериале «Школа „Чёрная дыра“ » в третьем сезоне есть серия «Тессеракт». Лукас нажимает на секретную кнопку и школа начинает «складываться как математический тессеракт».
  • Термин «тессеракт» и производный от него термин «тессировать» встречается в повести Мадлен Л’Энгл «Складка времени».
  • TesseracT название британской джент группы.
  • В серии фильмов Кинематографическая вселенная Marvel Тессеракт - это ключевой элемент сюжета, космический артефакт в форме гиперкуба.
  • В рассказе Роберта Шекли «Мисс Мышка и четвертое измерение» один писатель-эзотерик, знакомец автора, пытается увидеть тессеракт, часами глядя на сконструированный им прибор: шар на ножке с воткнутыми в него стержнями, на которые насажены кубы, обклеенные всеми подряд эзотерическими символами. В рассказе упоминается труд Хинтона.
  • В фильмах Первый Мститель, Мстители. Тессеракт-энергия все вселенной

Другие названия

  • Гексадекахорон (англ. Hexadecachoron )
  • Октохорон (англ. Octachoron )
  • Тетракуб
  • 4-Куб
  • Гиперкуб (если не оговаривается число измерений)

Примечания

Литература

  • Charles H. Hinton. Fourth Dimension, 1904. ISBN 0-405-07953-2
  • Martin Gardner, Mathmatical Carnival, 1977. ISBN 0-394-72349-X
  • Ian Stewart, Concepts of Modern Mathematics, 1995. ISBN 0-486-28424-7

Ссылки

На русском языке
  • Программа Transformator4D. Формирование моделей трёхмерных проекций четырёхмерных объектов (в том числе и Гиперкуба).
  • Программа, реализующая построение тессеракта и все его афинные преобразования, с исходниками на С++.

На английском языке

  • Mushware Limited - программа вывода тессеракта (Tesseract Trainer , лицензия совместима с GPLv2) и шутер от первого лица в четырёхмерном пространстве (Adanaxis ; графика, в основном, трёхмерная; есть версия под GPL в репозиториях ОС).

В геометрии гиперкуб - это n -мерная аналогия квадрата (n = 2) и куба (n = 3). Это замкнутая выпуклая фигура, состоящая из групп параллельных линий, расположенных на противоположных краях фигуры, и соединенных друг с другом под прямым углом.

Эта фигура также известная под названием тессеракт (tesseract). Тессеракт относится к кубу, как куб относится к квадрату. Более формально, тессеракт может быть описан как правильный выпуклый четырехмерный политоп (многогранник), чья граница состоит из восьми кубических ячеек.

Согласно Окфордскому словарю английского языка, слово "tesseract" было придумано в 1888 Чарльзом Говардом Хинтоном (Charles Howard Hinton) и использовано в его книге "Новая эра мысли" ("A New Era of Thought"). Слово было образовано от греческого "τεσσερες ακτινες" ("четыре луча"), имеется в виде четыре оси координат. Кроме этого, в некоторых источниках, эту же фигуру называли тетракубом (tetracube).

n -мерный гиперкуб также называется n-кубом .

Точка - это гиперкуб размерности 0. Если сдвинуть точку на единицу длины, получится отрезок единичной длины - гиперкуб размерности 1. Далее, если сдвинуть отрезок на единицу длины в направлении перпендикулярном направлению отрезка получится куб - гиперкуб размерности 2. Сдвигая квадрат на единицу длины в направлении перпендикулярном плоскости квадрата, получается куб - гиперкуб размерности 3. Этот процесс может быть обобщен на любое количество измерений. Например, если сдвинуть куб на единицу длины в четвертом измерении, получится тессеракт.

Семейство гиперкубов является одним из немногих правильных многогранников, которые могут быть представлены в любом измерении.

Элементы гиперкуба

Гиперкуб размерности n имеет 2n "сторон" (одномерная линия имеет 2 точки; двухмерный квадрат - 4 стороны; трехмерный куб - 6 граней; четырехмерный тессеракт - 8 ячеек). Количество вершин (точек) гиперкуба равно 2 n (например, для куба - 2 3 вершин).

Количество m -мерных гиперкубов на границе n -куба равно

Например, на границе гиперкуба находятся 8 кубов, 24 квадрата, 32 ребра и 16 вершин.

Элементы гиперкубов
n-куб Название Вершина
(0-грань)
Ребро
(1-грань)
Грань
(2-грань)
Ячейка
(3-грань)
(4-грань) (5-грань) (6-грань) (7-грань) (8-грань)
0-куб Точка 1
1-куб Отрезок 2 1
2-куб Квадрат 4 4 1
3-куб Куб 8 12 6 1
4-куб Тессеракт 16 32 24 8 1
5-куб Пентеракт 32 80 80 40 10 1
6-куб Хексеракт 64 192 240 160 60 12 1
7-куб Хептеракт 128 448 672 560 280 84 14 1
8-куб Октеракт 256 1024 1792 1792 1120 448 112 16 1
9-куб Эненеракт 512 2304 4608 5376 4032 2016 672 144 18

Проекция на плоскость

Формирование гиперкуба может быть представлено следующим способом:

  • Две точки A и B могут быть соединены, образуя отрезок AB.
  • Два параллельных отрезка AB и CD могут быть соединены, образуя квадрат ABCD.
  • Два параллельных квадрата ABCD и EFGH могут быть соединены, образуя куб ABCDEFGH.
  • Два параллельных куба ABCDEFGH и IJKLMNOP могут быть соединены, образуя гиперкуб ABCDEFGHIJKLMNOP.

Последнюю структуру нелегко представить, но возможно изобразить ее проекцию на двухмерное или трехмерное пространство. Более того, проекции на двухмерную плоскость могут быть более полезны возможностью перестановки позиций спроецированных вершин. В этом случае можно получить изображения, которые больше не отражают пространственные отношения элементов внутри тессеракта, но иллюстрируют структуру соединений вершин, как на примерах ниже.

На первой иллюстрации показано, как в принципе образуется тессеракт путем соединения двух кубов. Эта схема похожа на схему создания куба из двух квадратов. На второй схеме показано, что все ребра тессеракта имеют одинаковую длину. Эта схема также заставляют искать соединенные друг с другом кубы. На третьей схеме вершины тессеракта расположены в соответствии с расстояниями вдоль граней относительно нижней точки. Эта схема интересна тем, что она используется как базовая схема для сетевой топологии соединения процессоров при организации параллельных вычислений: расстояние между любыми двумя узлами не превышает 4 длин ребер, и существует много различных путей для уравновешивания нагрузки.

Гиперкуб в искусстве

Гиперкуб появился в научно-фантастической литературе с 1940 года, когда Роберт Хайнлайн в рассказе "Дом, который построил Тил" ("And He Built a Crooked House") описал дом, построенный по форме развертки тессеракта. В рассказе этот Далее этот дом сворачивается, превращаясь в четырехмерный тессеракт. После этого гиперкуб появляется во многих книгах и новеллах.

В фильме "Куб 2: Гиперкуб" рассказывается о восьми людях, запертых в сети гиперкубов.

На картине Сальвадора Дали "Распятие" ("Crucifixion (Corpus Hypercubus)", 1954) изображен Иисус распятый на развертке тессеракта. Эту картину можно увидеть в Музее Искусств (Metropolitan Museum of Art) в Нью-Йорке.

Заключение

Гиперкуб - одна из простейших четырехмерных объектов, на примере которого можно увидеть всю сложность и необычность четвертого измерения. И то, что выглядит невозможным в трех измерениях, возможно в четырех, например, невозможные фигур. Так, например, бруски невозможного треугольника в четырех измерениях будут соединены под прямыми углами. И эта фигура будет выглядеть так со всех точек обзора, и не будет искажаться в отличие от реализаций невозможного треугольника в трехмерном пространстве (см.

Как только я стала в состоянии после операции читать лекции, первый же вопрос, который задали студенты:

Когда вы нам нарисуете 4-мерный куб? Ильяс Абдульхаевич нам обещал!

Я помню, что мои дорогие френды иногда любят минутку математического ликбеза. Поэтому кусочек своей лекции для математиков я напишу и тут. И постараюсь без занудства. Лекцию в каких-то моментах я читаю строже, конечно.

Давайте сначала договоримся. 4-мерное, а тем более 5-6-7- и вообще k-мерное пространство нам в чувственных ощущениях не дано.
"Мы убоги, потому что всего лишь трехмерны," -- как говорил мой преподаватель в воскресной школе, который первым и рассказал мне, что такое 4-мерный куб. Воскресная школа была, естественно, крайне религиозная -- математическая. В тот раз мы вот изучали гипер-кубы. За неделю до этого мат.индукцию, через неделю после этого гамильтоновы циклы в графах -- соответственно, это 7 класс.

Мы не можем 4-мерный куб потрогать, понюхать, услышать или увидеть. Что же мы можем с ним сделать? Мы можем его себе представить! Потому что наш мозг гораздо более сложная штука, чем наши глаза и руки.

Итак, для того, чтобы понять, что такое 4-мерный куб, давайте поймем сначала то, что нам доступно. Что такое 3-мерный куб?

Ладно-ладно! Я не прошу у вас четкого математического определения. Просто представьте себе самый простой и обыкновенный трех-мерный куб. Представили?

Хорошо.
Для того, чтобы понять, как же обобщить 3-мерный куб в 4-мерное пространство, давайте сообразим, что же такое 2-мерный куб. Так это просто -- это же квадрат!

У квадрата 2 координаты. У куба три. Точки квадрата -- точки с двумя координатами. Первая от 0 до 1. И вторая от 0 до 1. У точек куба три координаты. И каждая -- любое число от 0 до 1.

Логично себе представить, что 4-мерный куб -- это такая штука, у которой 4 координаты и все от 0 до 1.

/* Тут же логично представить себе 1-мерный куб, который не что иное как простой отрезок от 0 до 1. */

Так, стоп, а как же рисовать 4-мерный куб? Ведь мы не можем на плоскости нарисовать 4-мерное пространство!
Но ведь 3-мерное пространство мы тоже не рисуем на плоскости, мы рисуем его проекцию на 2-мерную плоскость рисунка. Третью координату (z) мы располагаем под углом, представляя себе, что ось из плоскости рисунка идет "к нам".

Теперь совершенно ясно, как же рисовать 4-мерный куб. Точно так же, как третью ось мы расположили под некоторым углом, возьмем четвертую ось и тоже расположим под некоторым углом.
И -- вуаля! -- проекция 4-мерного куба на плоскость.

Что? Что это вообще? Слышу я всегда шепот с задних парт. Давайте я подробнее объясню, что же это за мешанина линий.
Смотрите сначала на трехмерный куб. Что мы сделали? Мы взяли квадрат и протащили его вдоль третьей оси (z). Это как много-много бумажных квадратов, склеенных в стопку между собой.
С 4-мерным кубом то же самое. Давайте четвертую ось для удобства и для сайнс-фикшн будем называть "ось времени". Нам надо взять обычный трех-мерный куб и протащить его во времени от времени "сейчас" до времени "через час".

У нас есть куб "сейчас". На рисунке он розовый.

А теперь тащим его вдоль четвертой оси -- вдоль оси времени (я ее показала зеленым). И получаем куб будущего -- голубой.

Каждая вершина "куба сейчас" во времени оставляет след -- отрезочек. Соединяющий ее теперешнюю с ней же будущей.

Короче, без лирики: нарисовали два одинаковых 3-мерных куба и соединили соответствующие вершины.
Точно так же, как делали с 3-мерным кубом (нарисовали 2 одинаковых 2-мерных куба и соединили вершины).

Чтобы нарисовать 5-мерный куб, вам придется нарисовать две копии 4-мерного куба (4-мерный куб с пятой координатой 0 и 4-мерный куб с пятой координатой 1) и соединить соответствующие вершины ребрами. Правда, на плоскости выйдет такая мешанина ребер, что понять что-либо будет почти невозможно.

Когда мы представили себе 4-мерный куб и даже смогли его нарисовать, можно его по-всякому исследовать. Не забывая исследовать его и в уме, и по картинке.
Напрмер. 2-мерный куб ограничен с 4 сторон 1-мерными кубами. Это логично: по каждой из 2 координат у него есть и начало, и конец.
3-мерный куб ограничен с 6 сторон 2-мерными кубами. По каждой из трех координат у него есть начало и конец.
Значит, 4-мерный куб должен быть ограничен восемью 3-мерными кубами. По каждой из 4 координат -- с двух сторон. На рисунке выше мы явно видим 2 грани, ограничивающие его по координате "время".

Вот тут -- два кубика (они чуть-чуть косые потому, что у них 2 размерности спроецированы на плоскость под углом), ограничивающие наш гипер-куб слева и справа.

Нетрудно так же заметить "верхний" и "нижний".

Самое сложное -- понять визуально, где "передний" и "задний". Передний начинается от передней грани "куба сейчас" и до передней грани "куба будущего" -- он рыжий. Задний соответственно, фиолетовый.

Их труднее всего заметить, потому что под ногами путаются другие кубы, которые ограничивают гипер-куб по другой спроецированной координате. Но заметьте, что кубы все-таки разные! Вот еще раз картинка, где выделен "куб сейчас" и "куб будущего".

Конечно, можно спроецировать 4-мерный куб в 3-мерное пространство.
Первая возможная пространственная модель понятно как выглядит: надо взять 2 каркаса куба и соединить их соответствующие вершины новым ребром.
У меня такой модели сейчас в наличии нет. На лекции я студентам показываю немного другую 3-мерную модель 4-мерного куба.

Знаете, как куб проецируют на плоскость вот так.
Как будто мы смотрим на куб сверху.

Ближняя грань, понятно, большая. А дальняя грань выглядит поменьше, мы ее видим сквозь ближнюю.

Вот так же можно проецировать 4-мерный куб. Куб сейчас побольше, куб будущего мы видим в отдалении, поэтому он выглядит меньше.

С другой стороны. Со стороны вершины.

Прямо ровно со стороны грани:

Со стороны ребра:

И последний ракурс, несимметричный. Из раздела "ты еще скажи, что я ему между ребер заглядывал".

Ну, а дальше можно придумывать всякое. Например, как бывает развертка 3-мерного куба на плоскость (это как надо вырезать лист бумаги, чтобы при сворачивании получить куб), так же бывает развертка 4-мерного куба в пространство. Это как надо вырезать кусок дерева, чтобы сворачивая его в 4-мерном пространстве мы получили тессеракт.

Можно изучать не просто 4-мерный куб, а вообще n-мерные кубы. Например, правда ли, что радиус сферы, описанной вокруг n-мерного куба меньше, чем длина ребра этого куба? Или вот вопрос попроще: а сколько вершин у n-мерного куба? А сколько ребер (1-мерных граней)?

Гиперкуб и Платоновы тела

Смоделировать в системе «Вектор» усеченныйикосаэдр («футбольный мяч»)
у которого каждый пятиугольник ограниченшестиугольниками

Усечённый икосаэдр может быть получен срезанием 12 вершин с образованием граней в виде правильных пятиугольников. При этом число вершин нового многогранника увеличивается в 5 раз (12×5=60), 20 треугольных граней превращаются в правильные шестиугольники (всего граней становится 20+12=32 ), а число рёбер возрастает до 30+12×5=90 .

Шаги построения усеченного икосаэдра в системе «Вектор»

Фигуры в 4-мерном пространстве.

--à

--à ?

Например, даны куб и гиперкуб. В гиперкубе 24 грани. Значит, у 4-мерного октаэдра будет 24 вершины. Хотя нет, у гиперкуба – 8 граней кубов – в каждом центр -вершина. Значит, у 4-мерного октаэдрабудет 8 вершини того легче.

4-мерный октаэдр . Он состоит из восьми равносторонних и равных между собой тэтраэдров,
соединенных по четыре у каждой вершины.

Рис. Попытка смоделировать
гипершар-гиперсферу в системе «Вектор»

Передняя – задняя грани – шары без искажения. Еще шестьшаров – можно задать черезэллипсоиды или квадратичные поверхности (через 4 линии контура как образующие) иличерез грани (сначала задаются через образующие).

Еще приемы «построить» гиперсферу
- тот же «футбольный мяч» в 4-мерном пространстве

Приложение 2

Для выпуклых многогранников имеет место свойство, связывающее число его вершин, ребер и граней, доказанное в 1752 году Леонардом Эйлером, и получившее название теоремы Эйлера.

Прежде чем его сформулировать рассмотрим известные нам многогранники и заполним следующую таб­лицу, в которой В - число вершин, Р - ребер и Г - граней данного мно­гогранника:

Название многогранника

Треугольная пирамида

Четырехугольная пирамида

Треугольная призма

Четырехугольная призма

n - угольная пирамида

n +1

2n

n +1

n - угольная призма

2n

3n

n+2

n - угольная усеченная

пирамида

2n

3n

n+2

Из этой таблицы непосредственно видно, что для всех выбранных мно­гогранников имеет место равенство В - Р + Г = 2. Оказывается, что это равенство справедливо не только для этих многогранников, но и для про­извольного выпуклого многогранника.

Теорема Эйлера. Для любого выпуклого многогранника имеет место равенство

В - Р + Г = 2,

где В - число вершин, Р - число ребер и Г - число граней данного мно­гогранника.

Доказательство. Для доказательства этого равенства представим поверхность данного многогранника сделанной из эластичного материала. Удалим (вырежем) од­ну из его граней и оставшуюся поверхность растянем на плоскости. Полу­чим многоугольник (образованный ребрами удаленной грани многогранника), разбитый на более мелкие многоугольники (образованные остальными гранями многогранника).

Заметим, что многоугольники можно деформировать, увеличивать, уменьшать или даже искривлять их стороны, лишь бы при этом не происходило разрывов сторон. Число вершин, ребер и граней при этом не изменится.

Докажем, что для полученного разбиения многоугольника на более мелкие многоугольники имеет место равенство

(*)В - Р + Г " = 1,

где В – общее число вершин, Р – общее число ребер и Г " – число многоугольников, входящих в разбиение. Ясно, что Г "= Г – 1, где Г – число граней данного мно­гогранника.

Докажем, что равенство (*) не изменится, если в каком-нибудь многоугольнике данного разбиения провести диагональ (рис. 5, а). Действитель­но,после проведения такой диагонали в новом разбиении будет В вершин, Р+1 ребер и количество многоугольников увеличится на единицу. Следовательно, имеем

В - (Р + 1) + (Г "+1) = В – Р + Г ".


Пользуясь этим свойством, проведем диагонали, разбивающие входя­щие многоугольники на треугольники, и для полученного разбиения пока­жем выполнимость равенства (*) (рис. 5, б). Для этого будем последо­вательно убирать внешние ребра, уменьшая количество треугольников. При этом возможны два случая:

а) для удаления треугольника ABC требуется снять два ребра, в на­шем случае AB и BC ;

б) для удаления треугольника MKN требуется снять одно ребро, в нашем случае MN .

В обоих случаях равенство (*) не изменится. Например, в первом случае послеудаления треугольника граф будет состоять из В – 1 вершин, Р – 2 ребер и Г " – 1 многоугольника:

(В - 1) - (Р + 2) + (Г " – 1) = В – Р + Г ".

Самостоятельно рассмотрите второй случай.

Таким образом, удаление одного треугольника не меняет равенство (*). Продолжая этот процесс удаления треугольников, в конце концов, мы придем к разбиению, состоящему из одного треугольника. Для такого раз­биения В = 3, Р = 3, Г " = 1 и, следовательно, B – Р + Г " = 1. Значит, равенство (*) имеет место и для исходного разбиения, откуда оконча­тельно получаем, что для данного разбиения многоугольника справедливо равенство (*). Таким образом, для исходного выпуклого многогранника справедливо равенство В - Р + Г = 2.

Пример многогранника, для которого не выполняется соотношение Эйлера, показан на рисунке 6. Этот многогранник имеет 16 вершин, 32 ребра и 16 граней. Таким образом, для этого многогранника выполняется равенство В – Р + Г = 0.

Приложение 3.

Фильм Куб 2: Гиперкуб» (англ. Cube 2: Hypercube) - фантастический фильм, продолжение фильма «Куб».

Восемь незнакомых людей просыпаются в комнатах, имеющих форму куба. Комнаты находятся внутри четырёхмерного гиперкуба. Комнаты постоянно перемещаются путём "квантовой телепортации", и если перелезть в соседнюю комнату, то вернуться в прежнюю уже маловероятно. В гиперкубе пересекаются параллельные миры, время в некоторых комнатах течёт по-разному, и некоторые комнаты являются смертельными ловушками.

Сюжетно картина во многом повторяет историю первой части, что также отражается и на образах некоторых персонажей. В комнатах гиперкуба погибает нобелевский лауреат Розенцвейг, рассчитавший точное время уничтожения гиперкуба .

Критика

Если в первой части люди заточенные в лабиринт пытались помочь друг-другу, в этом фильме каждый сам за себя. Очень много лишних спецэффектов (они же ловушки) которые ни как не связывают логически данную часть фильма с предыдущей. То есть получается фильм Куб 2 - это этакий лабиринт будущего 2020-2030 годов, но никак не 2000. В первой части все виды ловушек может теоретически создать человек. Во второй части эти ловушки - программа какого-то компьютера, так называемая "Виртуальная реальность".


Тессеракт (от др.-греч. τέσσερες ἀκτῖνες — четыре луча) — четырёхмерный гиперкуб — аналог куба в четырёхмерном пространстве.

Изображение является проекцией (перспективой) четырёхмерного куба на трёхмерное пространство.

Согласно Оксфордскому словарю, слово «tesseract» было придумано и начало использоваться в 1888 Чарльзом Говардом Хинтоном (1853—1907) в его книге «Новая эра мысли». Позже некоторые люди назвали ту же самую фигуру «тетракубом».

Геометрия

Обычный тессеракт в евклидовом четырёхмерном пространстве определяется как выпуклая оболочка точек (±1, ±1, ±1, ±1). Иначе говоря, он может быть представлен в виде следующего множества:

Тессеракт ограничен восемью гиперплоскостями, пересечение которых с самим тессерактом задаёт его трёхмерные грани (являющиеся обычными кубами). Каждая пара непараллельных трёхмерных граней пересекается, образуя двумерные грани (квадраты), и так далее. Окончательно, тессеракт обладает 8 трёхмерными гранями, 24 двумерными, 32 рёбрами и 16 вершинами.

Популярное описание

Попытаемся представить себе, как будет выглядеть гиперкуб, не выходя из трёхмерного пространства.

В одномерном «пространстве» — на линии — выделим отрезок АВ длиной L. На двумерной плоскости на расстоянии L от АВ нарисуем параллельный ему отрезок DC и соединим их концы. Получится квадрат ABCD. Повторив эту операцию с плоскостью, получим трехмерный куб ABCDHEFG. А сдвинув куб в четвёртом измерении (перпендикулярно первым трём) на расстояние L, мы получим гиперкуб ABCDEFGHIJKLMNOP.
http://upload.wikimedia.org/wikipedia/ru/1/13/Построение_тессеракта.PNG

Одномерный отрезок АВ служит стороной двумерного квадрата ABCD, квадрат — стороной куба ABCDHEFG, который, в свою очередь, будет стороной четырёхмерного гиперкуба. Отрезок прямой имеет две граничные точки, квадрат — четыре вершины, куб — восемь. В четырёхмерном гиперкубе, таким образом, окажется 16 вершин: 8 вершин исходного куба и 8 сдвинутого в четвёртом измерении. Он имеет 32 ребра — по 12 дают начальное и конечное положения исходного куба, и ещё 8 ребер «нарисуют» восемь его вершин, переместившихся в четвёртое измерение. Те же рассуждения можно проделать и для граней гиперкуба. В двумерном пространстве она одна (сам квадрат), у куба их 6 (по две грани от переместившегося квадрата и ещё четыре опишут его стороны). Четырёхмерный гиперкуб имеет 24 квадратные грани — 12 квадратов исходного куба в двух положениях и 12 квадратов от двенадцати его ребер.

Аналогичным образом можно продолжить рассуждения для гиперкубов большего числа измерений, но гораздо интереснее посмотреть, как для нас, жителей трёхмерного пространства, будет выглядеть четырёхмерный гиперкуб. Воспользуемся для этого уже знакомым методом аналогий.

Развёртка тессеракта

Возьмём проволочный куб ABCDHEFG и поглядим на него одним глазом со стороны грани. Мы увидим и можем нарисовать на плоскости два квадрата (ближнюю и дальнюю его грани), соединённые четырьмя линиями — боковыми рёбрами. Аналогичным образом четырёхмерный гиперкуб в пространстве трёх измерений будет выглядеть как два кубических «ящика», вставленных друг в друга и соединённых восемью рёбрами. При этом сами «ящики» — трёхмерные грани — будут проецироваться на «наше» пространство, а линии, их соединяющие, протянутся в четвёртом измерении. Можно попытаться также представить себе куб не в проекции, а в пространственном изображении.

Подобно тому, как трёхмерный куб образуется квадратом, сдвинутым на длину грани, куб, сдвинутый в четвёртое измерение, сформирует гиперкуб. Его ограничивают восемь кубов, которые в перспективе будут выглядеть как некая довольно сложная фигура. Её часть, оставшаяся в «нашем» пространстве, нарисована сплошными линиями, а то, что ушло в гиперпространство, пунктирными. Сам же четырёхмерный гиперкуб состоит из бесконечного количества кубов, подобно тому как трёхмерный куб можно «нарезать» на бесконечное количество плоских квадратов.

Разрезав шесть граней трёхмерного куба, можно разложить его в плоскую фигуру — развёртку. Она будет иметь по квадрату с каждой стороны исходной грани плюс ещё один — грань, ей противоположную. А трёхмерная развертка четырёхмерного гиперкуба будет состоять из исходного куба, шести кубов, «вырастающих» из него, плюс ещё одного — конечной «гиперграни».

Свойства тессеракта представляют собой продолжение свойств геометрических фигур меньшей размерности в четырёхмерное пространство.

Проекции

На двухмерное пространство

Данная структура сложна для воображения, но возможно спроектировать тессеракт в двухмерные или трёхмерные пространства. Кроме того, проектирование на плоскость позволяет легко понять расположение вершин гиперкуба. Таким образом, можно получить изображения, которые больше не отражают пространственные отношения в пределах тессеракта, но которые иллюстрируют структуру связи вершин, как в следующих примерах:


На трёхмерное пространство

Проекция тессеракта на трёхмерное пространство представляет собой два вложенных трёхмерных куба, соответствующие вершины которых соединены между собой отрезками. Внутренний и внешний кубы имеют разные размеры в трехмерном пространстве, но в четырёхмерном пространстве это равные кубы. Для понимания равности всех кубов тессеракта была создана вращающаяся модель тессеракта.


Шесть усеченных пирамид по краям тессеракта — это изображения равных шести кубов.
Стереопара

Стереопара тессеракта изображается как две проекции на трёхмерное пространство. Такое изображение тессеракта разрабатывалось с целью представить глубину, как четвёртое измерение. Стереопара рассматривается так, чтобы каждый глаз видел только одно из этих изображений, возникает стереоскопическая картина, воспроизводящая глубину тессеракта.

Развёртка тессеракта

Поверхность тессеракта может быть развёрнута в восемь кубов (аналогично тому, как поверхность куба может быть развернута в шесть квадратов). Существует 261 различная развёртка тессеракта. Развёртки тессеракта могут быть подсчитаны нанесением на граф соединённых углов.

Тессеракт в искусстве

У Эдвине А. «Новая Равнина Абботта», гиперкуб выступает рассказчиком.
В одном эпизоде «Приключений Джимми Нейтрона»: «Мальчик-гений» Джимми изобретает четырёхмерный гиперкуб, идентичный фолдбоксу из романа «Дорога славы» 1963 Хайнлайна.
Роберт Э. Хайнлайн упоминал гиперкубы, по крайней мере, в трёх научно-фантастических рассказах. В «Дом четырех измерений» («Дом, который построил Тил») (1940) он описал дом, построенный как развёртка тессеракта.
В романе «Дорога славы» Хайнлайна описана гиперразмерная посуда, которая была изнутри больше, чем снаружи.
Рассказ Генри Каттнера «Mimsy Were the Borogoves» описывает развивающую игрушку для детей из далёкого будущего, по строению похожую на тессеракт.
В романе Алекса Гарленда (1999), термин «тессеракт» используется для трехмерной развёртки четырёхмерного гиперкуба, а не гиперкуба непосредственно. Это метафора, призванная показать, что познающая система должна быть шире познаваемой.
Сюжет фильма «Куб 2: Гиперкуб» сосредотачивается на восьми незнакомцах, пойманных в ловушку в «гиперкубе», или сети связанных кубов.
Телесериал «Андромеда» использует тессеракт-генераторы как устройство заговора. Они прежде всего предназначены, чтобы управлять пространством и временем.
Картина «Распятие на кресте» (Corpus Hypercubus) Сальвадора Дали (1954)
Комиксы «Nextwave comic book» изображают средство передвижения, включающее в себя 5 зон тессеракта.
В альбоме Voivod Nothingface одна из композиций названа «В моём гиперкубе».
В романе Энтони Пирса «Маршрут Куба» одна из орбитальных лун Международной ассоциации развития называется тессерактом, который был сжат в 3 измерения.
В сериале «Школа „Чёрная дыра“» в третьем сезоне есть серия «Тессеракт». Лукас нажимает на секретную кнопку и школа начинает складываться как математический тессеракт.
Термин «тессеракт» и производный от него термин «тессировать» встречается в повести Мадлен Л’Энгл «Складка времени»

turturist.ru - Академия путешественника